Derivatives of 2-Oxo-3(2*H*)-Benzothiazolineacetonitrile and Related Compounds. I. Synthesis of *N*-Hydroxy-2-oxo or Thioxo-3(2*H*)-Benzothiazolineethanimidamide and Related Products

John J. D'Amico*, John T. Marvel and Frederic G. Bollinger

Monsanto Agricultural Company, A Unit of Monsanto, 800 N. Lindbergh Boulevard, St. Louis, MO 63167 Received February 23, 1988

The following methods afforded the titled acetonitriles 1.5 in excellent yields: (1) the reaction of the appropriate 2-benzothiazolinones with chloroacetonitrile under basic conditions and (2) the dehydration of the appropriate 2-oxo-3(2H)-benzothiazolineacetamides with phosphorus oxychloride or pentoxide. The reaction of the acetonitriles 1.5 and 2-thioxo-3(2H)-benzothiazolineacetonitrile with hydroxylamine afforded the titled compounds 6-11. Supporting nmr and mass spectral data are discussed.

J. Heterocyclic Chem., 25, 1375 (1988).

The object of the present investigation was to prepare 2-oxo-3(2H)-benzothiazolineacetonitriles and related compounds by various methods and to utilize these nitriles as intermediates in the synthesis of the titled compounds.

The reaction of the appropriate 2-benzothiazolinone with chloroacetonitrile under basic conditions afforded the 2-oxo-3(2H)-benzothiazolineacetonitrile and related compounds 1.5 in 81 to 95% yields.

Method 1

The dehydration of the appropriate 2-oxo-3(2H)-benzothiazolineacetamides in dried dimethylformamide with phosphorus oxychloride furnished 1-5 in excellent yields.

Method 2

Replacing phosphorus oxychloride and dimethylformamide with phosphorus pentoxide and dried tetralin in reaction 2 and by heating the reaction mixture at 160-182° for one hour yielded 1 in 98% yield.

Method 3

We recently reported [1] that the reaction of 3-(chloromethyl)-2-benzothiazolinone with potassium cyanide in acetone, dimethylformamide or acetonitrile afforded 1 in 87 to 91% yield.

Method 4

The mixture melting point of products derived by Methods 1-4 were not depressed and their nmr spectra were identical. In the same communication [1] we also reported the synthesis of 2-thioxo-3(2H)-benzothiazolineacetonitrile by the following reactions:

Hydroxylamine is an exceptionally nucleophilic amino compound and reacts readily with all types of nitriles to give amidoximes [2-4].

Hollander and co-workers [3] have reported that a nitrile group in position near an electron-withdrawing substituent undergoes reaction with amines with unusual ease. For example, it has been reported that unusually rapid reactions occurred with hydroxylamine and succinonitrile [5], cyanogen [6] and tribromoacetonitrile [7].

The reaction of the appropriate acetonitrile 1-5 or 2-thioxo-3(2H)-benzothiazolineacetonitrile with hydroxylamine hydrochloride in an ethyl alcohol medium at 25-30° followed by neutralization with potassium carbonate afforded the titled compounds 6-11 in 75-91% yields.

T and X are shown in Table 3.

The analysis and nmr spectral data (Table 3) confirmed the proposed structures for 6-11. It is noteworthy to contrast the chemical shifts for 6 and 11.

In 11, the NCH₂, NH₂ and NOH protons appeared further downfield when compared to the same groups in 6. These downfield shifts in 11 are due to the deshielding effect of the thiocarbonyl group.

Table 1 (Method 1)

No.	T	Mp °C	% Yield	Empirical formula	NMR-δ ppm DMSO-d ₆ -TMS	Chemical Analysis	
1	н	134-135 [a]	95	C₀H₀N₂OS	4.85 (s, 2, NCH ₂) 7.00-7.70 (m, 4, ArH)	% C Calcd. 56.83 Found 56.92 % N Calcd. 14.73 Found 14.65	%H Calcd. 3.18 Found 3.21 %S Calcd. 16.86 Found 17.01
2	5-Cl	202-203 [b]	95	C ₉ H ₅ ClN ₂ OS	5.08 (s, 2, NCH ₂) 7.00-7.77 (m, 3, ArH)	% C Calcd. 48.11 Found 48.13 % N Calcd. 12.47 Found 12.44	%H Calcd. 2.24 Found 2.23 %S Calcd. 14.27 Found 14.50
3	6-Br	186-187 [c]	91	C ₉ H ₅ BrN ₂ OS	5.17 (s, 2, NCH ₂) 7.20-8.05 (m, 3, ArH)	% C Calcd. 40.17 Found 40.22 % N Calcd. 10.41 Found 10.46	%H Calcd. 1.87 Found 1.87 %S Calcd. 11.91 Found 11.97
4	6-OC ₂ H ₅	165-166 [d]	92	$C_{11}H_{10}N_2O_2S$	1.20 (t, 3, OCH ₃) 3.90 (q, 2, OCH ₂) 5.08 (s, 2, NCH ₂) 6.79-7.47 (m, 3, ArH)	% C Calcd. 56.40 Found 56.30 % N Calcd. 11.96 Found 12.10	%H Calcd. 4.30 Found 4.27 %S Calcd. 13.69 Found 13.88

[[]a] Recrystallization from isopropyl alcohol. [b] Recrystallization from toluene. [c] Recrystallization from ethyl acetate. [d] Recrystallization from isopropyl alcohol-ethyl acetate.

Table 2 (Method 2)

				Empirical	%	S C	%	Н	%	N	%	6S
No.	T	M_P °C	% Yield	formula	Calcd.	Found	Calcd.	Found	Calcd.	Found	Calcd.	Found
1 [e]	Н	134-135 [a]	95	C ₉ H ₆ N ₂ OS	56.83	56.85	3.18	3.22	14.73	14.73	16.86	16.79
2 [e]	5-Cl	202-203 [b]	97	C,H,CIN2OS	48.11	48.03	2.24	2.27	12.47	12.43	14.27	14.20
3 [e]	6-Br	186-187 [c]	67	C,H,BrN2OS	40.17	39.91	1.87	1.89	10.41	10.37	11.91	11.78
4 [e]	6-OC ₂ H ₅	165-166 [d]	90	$C_{11}H_{10}N_2O_2S$	56.40	56.37	4.30	4.38	11.96	11.89	13.69	13.61
5 [e]	6-NO ₂	199-200 [c]	96	C ₉ H ₅ N ₃ O ₃ S	45.96	45.91	2.14	2.16	17.86	17.82	13.63	13.63

[[]a] Recrystallization from isopropyl alcohol. [b] Recrystallization from toluene. [c] Recrystallization from ethyl acetate. [d] Recrystallization from isopropyl alcohol-ethyl acetate. [e] A mixture melting points of 1-5 derived by Methods 1 or 2 were not depressed and their nmr spectra were identical.

Table 3

No.	Т	x	Mp °C	% Yield	Empirical formula	NMR-δ ppm DMSO-d ₆ -TMS	Chemical Analysis		
6	н	0	202-203 [a]	90	C _o H _o N ₅ O ₂ S	4.50 (s, 2, NCH ₂) 5.40 (s, 2, NH ₂) 6.80-7.70 (m, 4, ArH) 9.15 (s, 1, NOH)	% C Calcd. 48.42 Found 48.36 % N Calcd. 18.82 Found 18.82	%H Calcd. 4.86 Found 4.56 %S Calcd. 14.36 Found 14.34	
7	5-Cl	0	222-223 [a]	87	C,H,ClN,O2S	4.50 (s, 2, NCH ₂) 5.47 (s, 2, NH ₂) 6.90-7.71 (m, 3, ArH) 9.21 (s, 1, NOH)	% C Calcd. 41.95 Found 41.98 % N Calcd. 16.31 Found 16.30	%H Calcd. 3.13 Found 3.16 %S Calcd. 12.44 Found 12.46	
8	6-Br	0	216-217 [a]	80	C ₉ H ₈ BrN ₃ O ₂ S	4.56 (s, 2, NCH ₂) 5.51 (s, 2, NH ₂) 7.02-7.96 (m, 3, ArH) 9.28 (s, 1, NOH)	% C Calcd. 35.78 Found 35.75 % N Calcd. 13.91 Found 13.91	% H Calcd. 2.67 Found 2.68 % S Calcd. 10.61 Found 10.65	
9	6-OC ₂ H ₅	0	184-185	75	$C_{11}H_{18}N_8O_8S$	1.30 (t, 3, OCCH ₃) 3.98 (q, 2, OCH ₂) 4.48 (s, 2, NCH ₂) 5.43 (s, 2, NH ₂) 6.72-7.34 (m, 3, ArH) 9.21 (s, 1, NOH)	%C Calcd. 49.43 Found 49.48 %N Calcd. 15.72 Found 15.74	% H Calcd. 4.90 Found 4.95 %S Calcd. 12.00 Found 12.04	

							% C	% H
10 [c]	6-NO ₂	0	207-208	91	$C_9H_8N_4O_4S$	4.68 (s, 2, NCH ₂)	Calcd. 40.30	Calcd. 3.01
(-)	-				,	$5.67 (s, 2, NH_2)$	Found 40.39	Found 3.03
						7.45 (d, J = 7 ppm,	% N	% S
						1, ArH), 8.29 (d, $J =$	Calcd. 20.89	Calcd. 11.95
						7 ppm, 2nd order split- ting, J = 2 ppm, 1, ArH), 9.35 (s, 1, NOH)	Found 20.82	Found 12.00
						AIII), 9.33 (s, 1, 11011)		
							% C	% H
11	H	S	187-188 [b]	90	$C_9H_9N_3OS_2$	5.13 (s, 2, NCH ₂)	Calcd. 45.17	Calcd. 3.79
						5.58 (s, 2, NH ₂)	Found 45.18	Found 3.81
						7.12-7.80 (m, 4, ArH)	% N	%S
						9.30 (s, 1, NOH)	Calcd. 17.56	Calcd. 26.80
							Found 17.53	Found 26.77

[a] Recrystallization from dimethylformamide. [b] Recrystallization from ethyl acetate. [c] Electron impact mass spectrum m/e (relative intensity) 268 (83) M:, 223 (17), 181 (100), 135 (40), 108 (8), 71 (8), 63 (11), 43 (31) and 42 (49).

EXPERIMENTAL

The nmr spectra were obtained with a Varian T-60 nmr spectrometer. The chemical shifts are reported in ppm, using tetramethylsilane as reference. All melting points were taken upon a Fisher-Johns block and are uncorrected. The electron impact mass spectrum for 10 was determined with a Varian MAT CH-7A mass spectrometer operating at an ionizing potential of 70 eV using the direct insertion probe technique with a source temperature of 267°.

2-Oxo-3(2H)-benzothiazolineacetonitrile (1), 5-Chloro-2-oxo-3(2H)-benzothiazolineacetonitrile (2), 6-Bromo-2-oxo-3(2H)-benzothiazolineacetonitrile (3) and 6-Ethoxy-2-oxo-3(2H)-benzothiazolineacetonitrile (4) [Method 1].

To a stirred solution containing 0.1 mole of the appropriate 2-benzothiazolinone, 6.6 g (0.1 mole) of 85% potassium hydroxide, 200 ml of acetone and 10 ml of water, 7.7 g (0.1 mole) of 97% chloronitrile was added in one portion. The stirred reaction mixture was heated at reflux for 6 hours and then at 25-30° for 18 hours. After the addition of 800 ml of water, stirring was continued at 25-30° for 1 hour. The solid was collected by filtration, washed with water until neutral and air-dried at 25-30°. The data are summarized in Table 1.

6-Nitro-2-oxo-3(2H)-benzothiazolineacetonitrile (5) [Method 1].

To a stirred slurry containing 59 g (0.3 mole) of 6-nitro-2-benzothiazolinone [8], 42 g of potassium carbonate and 200 ml of dimethylformamide, 46.2 g (0.6 mole · 100% excess of 97% chloroacetonitrile) was added in one portion. The stirred reaction mixture was heated at 80-90° for 6 hours and then at 25-30° for 18 hours. After the addition of 1500 ml of water, stirring was continued at 25-30° for 1 hour. The solid was collected by filtration, washed with water until neutral and air-dried at 50°. Compound 5, mp 193-195°, was obtained in 81% yield. After recrystallization from ethyl acetate 5 melted at 199-200°; nmr (deuteriodimethyl sulfoxide): δ 5.25 (s, 2, NCH₂); 7.66 (d, 1, ArH); 7.67 (d, 1, ArH); 8.13-8.42 (2d, 1, ArH).

Anal. Calcd. for $C_9H_5N_3O_3S$: C, 45.96; H, 2.14; N, 17.86; S, 13.63. Found: C, 46.14; H, 2.21; N, 17.72; S, 13.53.

Compounds 1-5 [Method 2].

To a stirred solution containing 0.1 mole of the appropriate 2-oxo-3(2H)-benzothiazolineacetamide and 100 ml of dried dimethylformamide, 15.4 g (0.1 mole) of phosphorus oxychloride was added dropwise at 90-100° over a 5 minute period and then heated at 90-100° for 1 hour. After cooling to 5°, 800 g of ice water was added and stirring continued at 25-30° for 30 minutes. The solid was collected by filtration, washed with water until neutral and air-dried at 50°. The data are summarized in Table 2.

Compound 1 [Method 3].

A stirred slurry containing 21 g (0.1 mole) of 2-oxo-3(2H)-benzothiazolineacetamide, 8.5 g of phosphorus pentoxide and 200 ml of dried tetralin was heated at 160-182° for 1 hour. After cooling to 10°, 800 g of ice water was added and stirring continued at 0-10° for 1 hour. The solid was collected by filtration, washed with water until neutral and air-dried at 25-30°. Compound 1, mp 122-124°, was obtained in 98% yield. After recrystallization from isopropyl alcohol 1 melted at 133-134°. A mixture melting point with 1 obtained by Methods 1 or 2 was not depressed and their nmr spectra were identical.

Anal. Calcd. for C₉H₈N₂OS: C, 56.83; H, 3.18; N, 14.73; S, 16.86. Found: C, 56.98; H, 3.37; N, 14.78; S, 16.50.

Compound 1 [Method 4].

We recently reported [1] that the reaction of 3-(chloromethyl)-2-benzothiazolinone with potassium cyanide in acetone, dimethylformamide or acetonitrile furnished 1 in 87 to 91% yield.

N-Hydroxy-2-oxo or Thioxo-3(2H)-benzothiazoleethanimidamide and Related Products 6-11.

A stirred slurry containing 0.1 mole of 1, 2, 3, 4, 5 or 2-thioxo-3(2H)-benzothiazolineacetonitrile [1] in 900 ml of ethyl alcohol was heated to 60° and then allowed to cool to room temperature. To this stirred mixture, a solution containing 7 g (0.1 mole) of hydroxylamine hydrochloride in 25 ml of water was added in one portion and stirring continued at 25-30° for 7 hours. A solution containing 6.4 g (0.06 mole) of potassium carbonate in 25 ml of water was added and stirring continued at 25-30° for 18 hours. After the addition of one liter of water, stirring was continued at 25-30° for 1 hour. The solid was collected by filtration, washed with water until neutral and air-dried at 25-30°. The data are summarized in Table 3.

REFERENCES AND NOTES

- [1] J. J. D'Amico, L. Suba and P. G. Ruminski, J. Heterocyclic Chem., 22, 1479 (1985).
- [2] F. Tiemann, Ber., 17, 128 (1884); F. Tiemann and P. Kruger, ibid, 17, 1685 (1884); P. Eitner and H. Wetz, ibid, 26, 2844 (1893).
- [3] C. S. Hollander, R. A. Yoncoskie and P. L. deBenneville, J. Org. Chem., 23, 1112 (1958) and references therein.
 - [4] F. Eloy and R. Linaers, Chem. Rev., 62, 155 (1962).
 - [5] F. Sembritzki, Ber., 22, 2958 (1899).
 - [6] E. Fischer, Ber., 22, 1930 (1899).
 - [7] W. Steinkopf and H. Grunupp, Ber., 41, 3571 (1908).
- [8a] R. E. Hunter, J. Chem. Soc., 128 (1930); [b] J. J. D'Amico, F. G. Bollinger and J. J. Freeman, J. Heterocyclic Chem., in press.